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This paper explores the radial projection method for locally finite planar point

sets and provides numerical examples for different types of order. The main

question is whether the method is suitable to analyse order in a quantitative way.

The findings indicate that the answer is affirmative. In this context, local

visibility conditions are also studied for certain types of aperiodic point sets.

1. Introduction

When looking at physical structures, the natural question

about the internal order (of molecules, atoms, molecule clus-

ters) arises. How to quantify order in a good way is still largely

unknown.

Consider a mathematical model such that the positions of

the components inside the structure are represented as a

locally finite point set in Rd. We are primarily interested in the

cases d ¼ 2 or d ¼ 3. Let us denote the elements of the point

set as vertices. One could now describe the order by looking at

each vertex and measuring the Euclidean distance to all other

vertices in the set. This would yield a very complicated object,

and comparing two such objects resulting from different sets is

going to be even more complicated.

This approach would be somewhat naive and also does not

correspond to any physical measurement. There are, however,

methods like diffraction (see Hof, 1995; Cowley, 1995; and ch.

9 of Baake & Grimm, 2013, for an introduction) that give a lot

of information about the input set. Some properties which can

be analysed by diffraction are translational repetitions and

symmetries of the set.

Here, we present another approach, which shares some

similarities with the diffraction method, but avoids Fourier-

based methods and instead works in the direct space where the

point set lives. We would like to call this the radial projection

method, since its key ingredient is a suitable reduction of the

information coming from the point set, here implemented by

mapping a vertex to its angular component relative to some

reference frame.

2. Radial projection method

We restrict ourselves to the dimension d ¼ 2. A possible

generalization to higher dimensions will be discussed in x8.

Given a locally finite point set S � R2, we first choose a

reference point x0 2 S. Usually, x0 is chosen in such a way that

it provides high symmetry (see Fig. 8 for an example). Now, S

is thinned out by removing invisible vertices. These are the

vertices that are not observable from the reference point x0,

meaning that a straight line from x0 to the point p, say, is

already blocked by some other point p0 of the set:

9 p0 2 S 9 t 2 ð0; 1Þ : p0 ¼ x0 þ t � ðp� x0Þ: ð1Þ

Denote this new set of visible vertices by V.

Now, fix an r> 0 and consider the closed disc of radius r

around x0. Without loss of generality, we may assume

x0 ¼ ð0; 0Þ. Let VðrÞ be the intersection of the disc and V.

Since S was chosen as locally finite, we have jVðrÞj<1. We

proceed by projecting each v 2 VðrÞ from the reference point

onto the boundary of the disc. If we write the vertex in polar

coordinates, v ¼ s � expði’Þ (0 � s � r), this amounts to

mapping v to ’. This leaves us with a list of angles which are

then sorted in ascending order:

�ðrÞ :¼ f’1; . . . ; ’ng:

In fact, one has ’i <’iþ1 for all i since the reduction to visible

vertices ensures that the projected vertices are distinct. The

mapping from visible vertices to their angles is therefore one-

to-one.

By normalizing with the factor n=ð2�Þ, the mean distance

between consecutive ’i becomes 1. Let di :¼ ’iþ1 � ’i and

define the discrete probability measure (�x being the Dirac

measure at the position x)

�r :¼
1

n� 1

Xn�1

i¼1

�di

encoding these distances between consecutive angles (often

denoted as discrete spacing distribution in the physics litera-

ture). The choice to consider neighbouring angles is motivated

by the concept of two-point correlations which is prominent

when looking at interacting particle systems.

We need to know whether there exists a limit measure �,

lim
r!1

�r ¼ �;

in the sense of weak convergence of measures. The renor-

malization step of the angles is more a technical condition,

which makes it easier to compare �r for different radii r. It also

ensures that we map the input set to a point set of density 1 in

R. For the subsequent histograms, this means that we measure

in units of the mean distance on the x axis.

If such a measure � exists, we hope that it encodes enough

information about the order of the input set so that one can
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compare measures for different point sets and make state-

ments about the underlying sets. Obviously, comparing these

measures is an easier task than comparing the original point

sets.

Before attempting to apply this method to some interesting

point sets, we begin with some reference point sets as limiting

cases of a potential classification.

3. Analytic reference cases

So far, beyond the work of Athreya et al. (2013), there are two

cases which can be fully understood analytically and which

correspond to the opposite ends of the spectrum of order. At

one end, we encounter the totally ordered case, at the other

end complete disorder.

3.1. Perfect order: the Z2 lattice case

Here, the choice of reference point does not matter as long

as one chooses a x0 2 Z
2 [as in Marklof & Strömbergsson

(2010), where also a generic reference point was studied]. For

simplicity, we let x0 :¼ ð0; 0Þ. A simple geometric argument

then reveals that visibility of a vertex ðx; yÞ 2 Z2 is char-

acterized by the property that its Cartesian coordinates are

coprime (see also Baake, Moody et al., 2000; Pleasants &

Huck, 2013), which means gcdðx; yÞ ¼ 1.

It has long been known (Cobeli & Zaharescu, 2003) that the

visible lattice points are intimately related to the Farey frac-

tions

FQ ¼ fa=q : 1 � a � q � Q; gcdða; qÞ ¼ 1g;

here of order Q. Sorted in ascending order, FQ is also called a

Farey series, even though it is technically a finite sequence.

These sequences are especially interesting since certain

uniformity conditions are tied to one of the most important

problems in mathematics. Denote by FQðiÞ the ith entry of the

series FQ. Then, the growth statement

8 "> 0 :
Xm

i¼1

FQðiÞ �
i

m

����
���� ¼ OðQ1=2þ"Þ

(m ¼ jFQj) is equivalent to the Riemann hypothesis (Landau

& Franel, 1924). Another property worth noting is the closed

description of successive fractions, which admits enumeration

formulas that make an analytic approach possible.

In 2000, a proof (Boca et al., 2000) was presented for the

existence of a continuous limit distribution in this case. This

even holds for general star-shaped expanding regions with

some extra conditions (continuity and piecewise C1 for the

boundary). The density function, consisting of three regions,

reads

gðtÞ ¼

0; 0< t< 3
�2 ;

6
�2t2 � log �2 t

3 ;
3
�2 < t< 12

�2 ;

12
�2t2 � log 2= 1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 12

�2t

q� �� �
; t> 12

�2 ;

8>><
>>:

and belongs to our choice of a circular (a closed disc is placed

around the reference point x0) expanding region.

3.2. Total disorder: the Poisson case

At the opposite end of the spectrum, we encounter the

totally disordered case. In physics terminology, this is the

realm of the ideal gas. The vertices in R2 are distributed

according to a homogeneous spatial Poisson point process, a

model also known as complete spatial randomness (CSR),

emphasizing that points are randomly located in the ambient

space.

In detail, let � denote the standard Borel–Lebesgue

measure on R2 and V the random vertex set of our ideal gas.

For A � R2, define NðAÞ to be the number of vertices from V

in A. Then, V is characterized by the following properties:

(a) For each measurable A � R2, the quantity NðAÞ is a

Poisson random variable, which is distributed according to

Pois[��ðAÞ] for a fixed �> 0.

(b) For each finite selection of disjoint A1; . . . ;Ak � R
2, the

quantities NðA1Þ; . . . ;NðAkÞ are independent random vari-

ables.

The Poisson property (a) implies a condition for over-

lapping vertices,

lim
�ðAÞ!0

P½NðAÞ � 1�

P½NðAÞ ¼ 1�
¼ 1: ð2Þ

The probability of finding more than one vertex in a volume A

therefore vanishes when �ðAÞ goes to zero.

Fix a radius r> 0 and project the vertices from V \ Brð0Þ

(the choice of reference point is arbitrary) onto the boundary

@Brð0Þ. First of all, the overlapping property ensures that

almost surely no overlaps occur even after the projection.

Define for ’1; ’2 2 ½0; 2�Þ with ’1 <’2 the sector

S’1;’2
ðrÞ :¼ fz ¼ s � expði�Þ : 0 � s � r; ’1 � � � ’2g

between the angles ’1 and ’2. Let ’ 2 ½0; 2�Þ be fixed, set

’1 :¼ ’; ’2 :¼ ’þ " and consider the limit "! 0. Since

�½S’1;’2
ðrÞ� ! 0, the property in equation (2) implies that

there is at most one projected vertex at the location ’.

Now, select a subinterval ½a; b� of ½0; 2�� and study the

amount Nða; bÞ of projected points inside ½a; b�. The vertex

count in the sector Sa;bðrÞ completely determines the quantity

Nða; bÞ, which, by using property (a), is a Poisson random

variable with intensity ��ðSa;bÞ ¼ �½r
2‘=2� (with ‘ :¼ ja� bj

the length of the interval),

Nða; bÞ 	 Pois �
r2‘

2

� �
:

The mean number of points in Brð0Þ is ��r2. Normalizing the

angles with n=ð2�Þ, n the number of vertices inside Brð0Þ,

generates a new CSR with intensity � ¼ 1 on Rþ in the limit

r!1. The independence property (b) carries over to

dimension 1 in an analogous way.

The distance between consecutive points of a spatial

Poisson process in R is known to be exponentially distributed

with density function

f�ðtÞ ¼

�
� expð��tÞ; t � 0;
0; t< 0:
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In the probabilistic (temporal) interpretation of a Poisson

process, this is the distribution of the waiting time between

jumps. Our reference densities therefore have the shapes

shown in Fig. 1.

The graphs in Fig. 1 were produced by numerical evalua-

tion, using N ’ 1:98� 106 angles in the Z2 lattice case (radius

r ¼ 2900), and N ’ 1:96� 106 angles in the Poisson case. The

analytic density functions perfectly match the graphs, which

gives a hint at how large the amount of samples has to be in

general to produce appropriate approximations.

Our interest now is to study other point sets and to check

how they fit into this picture. Can one expect some kind of

interpolation behaviour between the two reference densities?

The primary focus will be on vertex sets coming from aper-

iodic tilings, since these feature both a repetitive structure but

also disorder. In terms of density functions, one might then

expect some ‘mixture’ of the Z2 and the Poisson case.

We point out that the existence of a limit distribution is

known in the two reference cases. In all other considered cases

we assume that the distribution exists, which is plausible from

the numerics. A first step to prove this is given in Marklof &

Strömbergsson (2013, theorem A.1). Since the release of the

article’s preprint, further results (Marklof & Strömbergsson,

2014) became available, wherefore we now know the existence

of the distribution for regular model sets.

4. Numerical approach

As mentioned in x3.1, the analytic approach for the integer

lattice case is based on the theory of Farey fractions. This

framework does not extend properly to arbitrary locally finite

point sets. And even for subsets of Z modules (like all our

covered examples are), this fails since the key property, the

closed description for neighbouring fractions mentioned in

x3.1, does not hold anymore – or at least not in an obvious way.

One would first need to extend the notion of Farey fractions in

a well defined manner to Z modules, but even then it is still

unclear whether the approach presented in Boca et al. (2000)

carries over.

From this perspective, an initial approach through numer-

ical methods was chosen. The basic idea is to generate a large

list of vertices such that the list needs only a minimal amount

of trimming to have a circular shape. Since our focus is on

aperiodic tilings, the primary step consisted in creating large

patches of these, from which we could then extract the vertex

sets with the required properties. The trimming is unavoidable

since both feasible methods introduce restrictions on the

shape of the generated patch.

There are essentially three methods to produce aperiodic

tilings of the plane. The first one is by defining a set of

prototiles with matching rules. This method is not suitable for

the purpose of implementation. We therefore focus on the

alternatives, namely inflation and projection.

4.1. Inflation rules

Probably the most prominent method is via inflation of

prototiles. For example, the Tübingen triangle tiling (abbre-

viated as TT) is produced from two prototiles (Baake &

Grimm, 2013, ch. 6.2), both with edge-length ratio � : 1. Here �
is the golden mean, which also serves as the inflation factor.

The first tile, denoted as type A, is inflated according to the

scheme shown in Fig. 2 (rescaled version indicated in red)

while type B follows the rule shown in Fig. 3.

One can see from the rules that the prototiles appear in

both chiralities in the resulting tiling. The reflected tiles are

simply inflated via the reflected rules.

It can be shown that, for properly chosen edge lengths, the

resulting vertex set lives in Z½	5� with 	n :¼ expð2�i=nÞ a

primitive nth root of unity. The first step, however, is to

generate the tiling patch itself and afterwards to extract the

vertices. We start with one of the prototiles and apply the

inflation rule a few times, inspecting the result for symmetric

subpatches in each step. In this case, the inflation rule applied

to one prototile of type A produces the patch shown in Fig. 4

(subpatch shaded in grey).

Now, one can isolate the indicated subpatch and use it as the

initial patch for the inflation. From the computational point of

view, this imposes some difficulties. We formulate these for

general modules Z½	n�, while keeping in mind the example of

the TT tiling (n ¼ 5) for illustrative purposes.

(i) Inflation steps are applied iteratively. This quickly leads

to accumulation of numerical errors. To avoid this, we solely
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Figure 1
Asymptotic spacing distribution for Z2 (left) and Poisson (right).

Figure 2
Tile A maps to 2 � A and 1 � B.

Figure 3
Tile B maps to 1 � A and 1 � B.



employ integer arithmetic and only switch to floating-point

when computing the angular component arctanðy=xÞ of a

vertex ðx; yÞ.

(ii) Elements of Z½	n� need to be encoded exactly. These

types of Z modules can be written as

Z½	n� ¼ fa0 þ a1	n þ . . .þ ar�1	
r�1
n : ai 2 Zg

[r ¼ 
ðnÞ the Euler totient function] and therefore only require

r integers to encode one element (resulting in a vertex size of

4� 4 ¼ 16 bytes for the TT if one uses standard 32-bit inte-

gers). The vertex byte count (see Table 1) is in fact significant,

see point (v).

(iii) The inflation rule applies to prototile objects, so we

have to keep a tile list during the patch construction. Because

of (i), we want an exact encoding for list elements. We

represent a tile using the type (A/B for TT), the chirality (not

always needed), a reference point of the tile [exact in the

Z-module case, see point (ii) above] and a rotation of the tile

around the reference point. This requires a quantizable angle

(the tile is only allowed to appear with a finite number of

distinct rotations), which fails when one considers for example

the famous pinwheel tiling (Radin, 1999).

(iv) The prototile description is only helpful while growing

the patch, but becomes cumbersome as soon as one is inter-

ested in raw vertex data. Each prototile object decomposes

into a bunch of vertices (three for the TT). Applying a

decomposition step to each prototile in the output list yields a

list with many duplicate vertices, requiring an additional step

to reduce the list to unique vertices. This involves constantly

accessing the list to locate already present vertices, making it

preferable to have a low element byte count.

(v) The determination of visibility of a single vertex is

generally very different from the Z2 case, where the test

consisted of computing the gcd of the two coordinates. In the

generic case, we have to consider the whole set of unique

vertices to determine the visibility of one vertex by doing a

geometric ray test [see equation (1)]. It proved to be more

efficient to combine the removal pass for unique vertices with

the visibility test pass and to use custom data structures to

further speed up the process.

The computation time mentioned in (v), which is OðnÞ, is

not to be underestimated (n being the total amount of vertices

collected at some point), and led to the investigation of cases

with tests having similar complexity as Z2, which is just Oð1Þ.

To summarize, there are roughly three steps: growing a

large circular patch, removal of duplicate vertices together

with the visibility test, and finally mapping vertices to angles

followed by proper normalization.

A simple optimization consists of removing redundancy

imposed by symmetry of the input set. For example, the gcd

is fixed under sign changes of the parameters. It also is

D4-symmetric, wherefore it suffices to consider the halved

upper-right quadrant of the Z2 lattice.

4.2. Model set description/cut-and-project

A different method for constructing tilings is given by the

cut-and-project method. The advantage is that it directly

yields vertices of the tiling and does not require keeping track

of the adjacency information. Another reason for choosing

this description, if applicable, is that some configurations

admit a much easier condition to determine visibility of a

given vertex by using local information only. In this regard,

such cases are very similar to Z2 together with the gcd test.

In a simplified setting, let (Rd;Rk;L) be a triple and �; �int

projections satisfying the following conditions:

(i) L is a lattice in Rd
� Rk;

(ii) � : Rd
� Rk

! Rd, with � jL injective;

(iii) �int : Rd
� Rk

! Rk, with �intðLÞ � R
k dense.

This setup is called a cut-and-project scheme (CPS). If we

define L :¼ �ðLÞ, the conditions above induce ? : L! R
k,

the star map. The lattice can then be written as L ¼

fðx; x?Þ : x 2 Lg and one usually encodes the CPS in a diagram.

The right-hand side in Fig. 5 describes the internal space, the

left one the physical space (since this is where the point set of

the tiling itself lives).

Details about the generic definition can be found in

Schlottmann (1998) and Baake & Grimm (2013). Given a CPS

as defined above, a model set then arises from choosing a

subset W � Rk (with certain conditions) and considering the

set
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Figure 4
Patch produced from five inflation steps applied to the TT prototile A.

Table 1
Prototile bit encoding for the TT tiling.

Property States Bit count

Type A/B 1
Chirality Normal/mirrored 1
Reference — 4� 32 (= 16 bytes)
Rotation f0; . . . ; 9g 4

Figure 5
General case of an R-CPS.



The subset W is called the window of the model set (also

denoted as acceptance region or occupation domain). It can be

shown that point sets of certain aperiodic tilings can be

generated using this description. This is also the important

aspect for our implementation purpose, since the main work

now consists of generating a suitable ‘cutout’ L0 � L and then

applying the window condition x? 2 W to each x 2 L0. Since

generic model sets are a broad topic, we restrict ourselves to a

more manageable subclass in the next section. It should also

be emphasized that we only consider model sets with physical

space R2, for reasons pointed out before.

4.3. Histogram statistics

It seems natural to compute statistical data (like variance

and skewness) to analyse the histogram data. We choose not to

do so, since this can be misleading. One can see from the

explicit density function gðtÞ of the Z2 case in x3.1 that the

moments of order k � 2 fail to exist. A Taylor expansion gives

gð1=tÞ ¼
36

�4
t3 þ

162

�6
t4 þOðt5Þ for t! 0þ;

characterizing the decay behaviour of the tail. Instead of the

statistics, which just exist because of finite size effects, we

provide the coefficients ck of tk (usually two) when the tail of

the respective histogram can be fitted with a power law.

5. Cyclotomic model sets

As stated above, we are interested in model set configurations

which admit local visibility tests. This special case is given by

the planar cyclotomic model sets of order n 2 N. It corre-

sponds to choosing d ¼ 2, k ¼ 
ðnÞ � 2 and L ¼ Z½	n� in Fig.

5. Since Z½	n� ¼ Z½	2n� for n odd, we impose the condition

n 6� 2 mod 4; compare Baake & Grimm (2013, ch. 3.4).

The setting can now be used to generate n-fold (rotation-

ally) symmetric point sets (and tilings). The ?-map, which

maps from physical to internal space, is given by the extension

of an algebraic conjugation; see Baake & Grimm (2013) for

details.

Since the cases n ¼ 3; 4 yield a planar lattice, we only

consider the configurations with n � 5. Of particular interest

are integers n which admit a simple window test. There are

three unique cases where the window lives in R2, or stated

differently where 
ðnÞ ¼ 4 holds: 5, 8 and 12.

The pseudo code in Algorithm 1 then produces the vertices

of a k-gon-shaped (k 2 f10; 8; 12g) patch of the corresponding

tiling. Note that for n ¼ 5, the shape is tenfold symmetric

because of the n 6� 2 (see above) condition. This k-gon shape

is desirable because it is already close to being circular and

needs just minor trimming.

5.1. Ammann–Beenker tiling

We employ the Ammann–Beenker (AB) tiling in its classic

version (Ammann et al., 1992; Baake & Grimm, 2013) with a

triangle and a rhombus. It admits a stone inflation (essentially

a rule which can be implemented as blowing up the tile

followed by a dissection process), where the triangle (here

called the prototile of type A) is inflated as given in Fig. 6.

The triangle appears in the tiling with both chiralities, and

the other chirality just uses the reflected rule. The rhombus

(prototile of type B) appears without chirality and is inflated

according to the rule in Fig. 7.

Here, the inflation multiplier is given by the silver mean

�sm ¼ 1þ
ffiffiffi
2
p

, which is a Pisot–Vijayaraghavan (PV) unit. PV

numbers are algebraic integers �> 1 such that all algebraic

conjugates (except for � itself) lie in the open unit disc. There

is a relation between the regularity of the tiling and the

properties of the inflation multiplier. PV inflations seem to

admit more regular tiling structures (ch. 2.5, Baake & Grimm,

2013); see x6 for an example of a less regular tiling point set.

A nice property of the AB tiling is that it can be described as

a cyclotomic model set (example 7.8, Baake & Grimm, 2013).

It corresponds to the diagram in Fig. 5 of cyclotomic type with

parameter n ¼ 8. The tiling vertices can therefore be

described as the set

TAB ¼ fx 2 Z½	8� : x? 2 W8g;

where the ?-map is given by the extension of 	8 7! 	3
8 and the

window W8 is a regular octagon centred at the origin (edge

length 1, see Fig. 8 for the orientation). The maximal real
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Figure 6
Tile A maps to 3 � A and 2 � B.

Figure 7
Tile B maps to 4 � A and 3 � B.



subring of Z½	8� is Z½
ffiffiffi
2
p
�, with the unit group generated by

�sm from above. By inspecting the action of these units on

the elements of the Z module, one can derive a local visibility

test

VAB ¼ fx 2 TAB : �smx? =2W8 and x is coprimeg

for the reference point chosen as the origin (see Table 2 for

some statistics). By coprimality of x we mean coprimality of

the coordinates in the direct-sum representation

Z½	8� ¼ Z½
ffiffiffi
2
p
� � Z½

ffiffiffi
2
p
� � 	8:

Consider an element x1 þ x2 � 	8 in the above decomposition.

The module Z½
ffiffiffi
2
p
� is a Euclidean domain and therefore

admits an algorithm to compute the Z½
ffiffiffi
2
p
�-gcd of x1 and x2.

By coprime we then understand that this gcd y is a unit, which

is equivalent to jNðyÞj ¼ 1, with N the algebraic norm in

the corresponding module, here given by the map

Nðaþ b �
ffiffiffi
2
p
Þ ¼ a2 � 2 � b2.

The first part of the visibility condition x? 2 W8 translates to

the following geometric condition in internal space: if a vertex

is visible, then it lives on a belt in internal space, which results

from cutting out a scaled-down version of the window from

the original window. Both windows are indicated on the right-

hand side of Fig. 8.

We see that the histogram in Fig. 9 (generated from roughly

1:8� 106 vertices) features several characteristics which we

have already observed for the Z2 case: a pronounced gap is

present where the distribution has zero mass; then we have a

middle section where the bulk of the mass is concentrated, and

finally a tail section with a power-law decay.

For an overview of the histogram statistics, see Table 3 at

the end of x5.

5.2. Tübingen triangle tiling

The Tübingen triangle tiling (TT) is a decagonal case of a

cyclotomic model set with planar window (see Baake et al.,

1990a,b; and example 7.10 of Baake & Grimm, 2013). The

underlying module is Z½	5� with maximal real subring Z½��,
where � is again the multiplier for the corresponding inflation

rule (see Figs. 2 and 3). See Fig. 10 for a circular patch

generated from applying the inflation rule four times.

For the computation of the vertices used for the radial

projection, again the model set description

TTT ¼ fx 2 Z½	5� : x? 2 W10 þ "g

was employed. The window W10 is a decagon with edge lengthffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð� þ 2Þ=5

p
, and, like the AB window, the right-most edge is

perpendicular to the x axis. Here, the ?-map is the extension of

	5 7! 	2
5. In this case, we need to apply a small generic shift " to

the window, otherwise leading to singular vertices (vertices
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Figure 8
Visible vertices of the eightfold symmetric Ammann–Beenker tiling (left:
direct space, right: internal space).

Table 2
Visibility statistics for the Ammann–Beenker tiling.

Max. steps Vertices Visible Percentage

40 561 327 58.2%
400 47713 27561 57.7%
1500 662265 382221 57.7%
2500 1835941 1059753 57.7%

Figure 9
Distribution of the radial spacings of a large D8-symmetric AB patch.

Figure 10
Patch of the Tübingen triangle tiling (after four inflations of the central
patch).



which lie on the boundary of the window when projected to

internal space). These are difficult to handle because of

precision issues when testing on the boundary. We therefore

restrict ourselves to non-singular sets. In our case we use

" ¼ 10�4 � ð1; 1Þ as the shift. The important aspect here is not

to shift in the direction of the window edges. Similar to the

eightfold case, a local visibility condition

VTT ¼ fx 2 TTT : �x? =2W10 � " and x is coprimeg

can be derived. The direct-sum representation here is

Z½	5� ¼ Z½�� � Z½�� � 	5, and Z½�� is again Euclidean.

Evaluation with a large patch (’ 1:5� 106 vertices)

produces the histogram shown in Fig. 11.

While being similar to the AB histogram in overall shape,

there are numerous differences in detail, especially in the

middle section, which features a lot more structure and is also

nicely aligned to the Z2 density function.

Zooming into the gap area (see Fig. 12) might even suggest

that the middle section decomposes into smaller components

[first step: ð0:18; 0:3Þ, second step: ð0:3; 0:5Þ, third step:

ð0:5; 1:3Þ].
Again, the statistics can be found in Table 3.

A related example of a distribution in closed form, for the

golden L (which is not a tiling system), has recently been

described by Athreya et al. (2013). It bears strong resemblance

to Fig. 11, thus making it fall into our ‘ordered regime’. This

supports the existence of universal features in this approach.

5.3. Gähler’s shield tiling

The Gähler shield (GS) tiling (Gähler, 1988, ch. 5) is our last

cyclotomic model set with internal space R2. It uses a dode-

cagonal configuration (Baake & Grimm, 2013, example 7.12)

and is also interesting in its algebraic properties, which make

the visibility test slightly more involved. The vertex set is

TGS ¼ fx 2 Z½	12� : x? 2 W12 þ "g

with the ?-map defined by 	12 7! 	5
12. The window W12 is a

dodecagon with edge length 1 and the usual orientation.

Again, a shift has to be applied to avoid singular vertices. The

underlying Z module decomposes into

Z½
ffiffiffi
3
p
� � Z½

ffiffiffi
3
p
� � 	12 with �12 :¼ 2þ

ffiffiffi
3
p

generating the unit group of Z½
ffiffiffi
3
p
�.

The local visibility test behaves in a more complex fashion

here. Consider an x 2 Z½	12� and denote by N the algebraic

norm of Z½
ffiffiffi
3
p
�. Now write x in the direct-sum decomposition

x ¼ x1 þ x2 � 	12 and define the map

n : Z½	12� ! N1 via x 7! jNðgcdðx1; x2ÞÞj:

Within our finite patch P, the set of visible points can then be

described as

VGS ¼fx 2 TGS : nðxÞ ¼ 1 ^ �1x? =2W12 þ "g [

fx 2 TGS : nðxÞ ¼ 2 ^ �2x? =2W12 � "g;

where �1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�12 � 2
p

and �2 :¼
ffiffiffiffiffiffiffiffiffiffiffi
�12=2
p

(therefore �1 � �2 ¼

�12), and as long as " is small enough in relation to the

distances within P*. The first set-component of VGS is again

comprised of coprime elements. The second set, however, is

exceptional, and its existence is linked to the degree of the

underlying cyclotomic field, which is n ¼ 12 here – a compo-

site number instead of a prime power as in the other two cases

[for cyclotomic fields, see Washington (1997)]. The difficulty

can also be seen on the level of Qð	nÞ, where the unit group is

slightly larger than in the prime power cases, here enlarged by

an additional generating element

z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ

ffiffiffi
3
p

q
� 	24:

We can see on the right-hand side of Fig. 13 that two belts

develop in internal space, one for the coprime vertices and

another one for the exceptional ones. Coprime vertices are
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Figure 12
Zoom into the bulk of the Tübingen triangle distribution.

Figure 11
Spacing distribution of a large Tübingen triangle patch.

Table 3
Statistical data generated from the radial projection (mean is always 1.0).

Tiling Gap size c3 c4 e k

Z2 0.304 0.369 0.168
AB 0.222 0.248 0.496 2.79 38560
TT 0.182 0.239 0.513 2.60 31376
GS 0.152 0.232 0.547 4.75 67524



represented as grey dots and exceptional vertices as black

dots. The boundaries of the rescaled (with the factors �1 and

�2, respectively) windows use the same colouring.

While still retaining the known threefold structure of

the two other cases, the GS tiling seems to approach the slope-

like characteristic from the Poisson case, as one can see from

Fig. 14.

The power-law fitting was done for the tail starting at 3.0

(see x4.3 for definitions). We indicate the quadratic error by e

in units of 10�10 and the amount of data points by k.

6. A non-Pisot inflation

We have seen that the examples of x5 are qualitatively close to

the order properties of the Z2 lattice. A similar behaviour of

cyclotomic model sets can also be seen in the mildly related

case of discrete tomography (Huck & Spiess, 2013). One might

guess that all kind of deterministic aperiodic tilings behave

that way. However, it turns out that this is not the case.

The chiral Lançon–Billard (LB) tiling (Lançon & Billard,

1988) is an example of an inflation-based tiling with a non-PV

multiplier given by

�LB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
5þ

ffiffiffi
5
p� �r

:

The inflation rule applies to two rhombic prototiles (see Figs.

15 and 16). The resulting tiling vertices live in Z½	5� (see Baake

& Grimm, 2013, ch. 6.5.1 for details, also concerning the non-

PV property of �LB), like the Tübingen triangle tiling above.

The LB tiling admits no model set description and it fails to

be a stone inflation, as one can see from the rules shown in

Figs. 15 and 16.

By multiple inflation of tile A, one can isolate a legal patch

of circular shape that is comprised of five tiles of type A. We

use this patch as our initial seed to grow suitable patches, like

the one in Fig. 17.

The resulting patches are C5 symmetric and begin to show a

high amount of spatial fluctuation when increasing the number

of inflation steps (the histogram in Fig. 18 was computed after

applying 12 inflations).

While not exactly matching the exponential distribution

from the Poisson case, the radial projection at least is sensitive

to the higher amount of spatial disorder in this tiling. In

particular, it shows an exponential rather than a power-
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Figure 15
Tile A maps to 3 � A and 1 � B.

Figure 16
Tile B maps to 1 � A and 2 � B.

Figure 13
Visible vertices of a GS tiling (left: direct space, right: internal space).

Figure 14
Spacing distribution of a large patch of the Gähler shield tiling.

Figure 17
Fivefold symmetric patch of the chiral LB tiling (after four inflations of the
initial patch).



law decay for large spacings. For the histogram statistics, see

Table 4.

7. Other planar tilings

The tilings considered in xx5 and 6 indicate that the method

gives at least partial information about the order of the point

set. Let us look at some more examples.

The chair tiling (Grünbaum & Shephard, 1987) is an

example of an inflation tiling with integer multiplier. It works

with just one L-shaped prototile and can produce patches with

D4 symmetry.

The patches can also be described as model sets (Baake &

Grimm, 2013), but with a more complicated internal space. We

thus employ the inflation method here.

The vertex set is a subset of Z2. It gives a good example why

one has to be careful with the visibility test. Although the set

lives in Z2, the standard gcd test fails in this situation. Consider

a vertex p :¼ ðx; yÞ which is not coprime, say with gcdðx; yÞ

¼ k> 1. For the integer lattice, one knows that

p0 :¼ ðx=k; y=kÞ is an element of the set and therefore

occludes p. This does not need to be the case here, and Figs. 19

and 20 show that the difference is indeed significant.

The Penrose–Robinson (PR) tiling is similar to the TT on the

level of the inflation rule. It uses the same prototiles, but a

different dissection rule (Baake & Grimm, 2013, ch. 6.2) after

blowing up the tiles by the inflation factor �.
Even though it shares these features with the TT, the

resulting distribution (see Fig. 21) is rather different and offers

a high amount of structure in the bulk section (see Fig. 22),

which can be identified as plateau-like increments.

Another tiling of the Penrose type can again be imple-

mented by using a model set description. This rhombic

Penrose (RP) tiling (Baake et al., 1990b) is special in that it

uses a multi-window configuration (Baake & Grimm, 2013,

example 7.11). Here the CPS in Fig. 5 is fixed, but multiple

windows Wi are used. Define the homomorphism

� : Z½	5� ! Z=5Z by �
P

i

ci	
i
5

� �
¼
P

i

ci mod 5;

then the window Wi for which the vertex x 2 Z½	5� is tested is

chosen depending on �ðxÞ.
However, the patches for this case had to be generated

using the geometric visibility test. Although the vertices

coming from different Wi are disjoint, there is still occlusion

between the sets which renders the local test ineffective in this

setup. A histogram can be seen in Fig. 23.

For the fit of the RP tiling, an additional power was used, to

achieve a similarly small error as in the other cases. Also, a

logarithmic fit provides numerical evidence that the decay

behaviour of the chiral LB tiling is identical to the Poisson case.

Another aspect, which is numerically plausible, is the

continuous dependence of the spacing distribution of the

cyclotomic cases (x5) under small perturbations of the window,
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Table 4
Statistical data for the other considered tilings.

Tiling Gap size c3 c4 c5 e

LB 0.0030
Chair 0.2536 0.229 0.538 5:07� 10�10

PR 0.0783 0.066 1.339 1:81� 10�10

RP 0.1169 0.459 �2.432 8.395 1:41� 10�9

Figure 19
Spacing distribution of a large patch of the chair tiling.

Figure 20
Spacing distribution of a large patch of the chair tiling (using the standard
gcd visibility test).

Figure 18
Spacing distribution of a large patch of the Lançon–Billard tiling.



which leave the area fixed. Replacing the window with a circle

of the same area does not have any noticeable influence on the

histogram. This is in line with related continuity results in

Marklof & Strömbergsson (2014) and certainly a much

stronger property than the invariance under removal of

singular vertices (see x5.2), which are known to have density

zero in the limit.

8. Concluding remarks

It would be interesting to study tilings which feature even

higher rotational symmetry than the examples we considered

here. While the data gathered from the three simple cyclo-

tomic cases already show a tendency, more tilings are needed

to fill the picture. The de Bruijn method (de Bruijn, 1981) via

dualization of a grid appears to be a suitable candidate to

generate these kinds of tilings.

Another aspect which needs further investigation is the

existence of a gap in all studied cases, except the LB one. For

cyclotomic model sets, this seems to be related to the existence

of lines with a high density of points on them (Pleasants, 2003).

This is a feature that is shared with the Z2 case. This has also

been observed in Marklof & Strömbergsson (2014).

Also of interest, but still unclear, is an extension of this

method to higher dimension. A possible way for R3 would be

to again project vertices of our set onto the three-dimensional

ball of radius r. For each projected point p, one could now

select the neighbour q with minimal distance to p on the

sphere and consider the angle of the arc between p and q. This

again produces a list of angles with which we proceed in the

usual way. From a computational point of view, this case is a

lot more involved, since it requires an exhaustive search for

each projected point to find its neighbour.

Before closing, we want to point out that projecting from a

centre of maximal symmetry might seem intuitive at first, but

still is kind of special. Since shifting the centre indeed changes

the distribution, we want to investigate if some averaging

[similar to the shelling problem (Baake, Grimm et al., 2000)

and as also discussed in Marklof & Strömbergsson (2014)]

makes more sense here.
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